Find x of `4^{\frac{x}{y}+\frac{y}{x}}=32`

 Find x, if

\displaystyle \begin{array}{|l}4^{\frac{x}{y}+\frac{y}{x}}=32\\ \log_3(x-y)+\log_3(x+y)=1\end{array}

Solution:
Checking if the system is defined for two variables is a hard task, so we shall find the eventual solutions to the system and check directly if the system is defined for them. We shall only write \displaystyle \begin{array}{|l}x+y>0\\x-y>0\end{array} for now.
\displaystyle \begin{array}{|l}\frac{x}{y}+\frac{y}{x}=log_432\\log_3(x^2-y^2)=1\end{array}
\displaystyle \begin{array}{|l}\frac{x}{y}+\frac{y}{x}=\frac{1}{2}log_232\\x^2-y^2=3\end{array}
\displaystyle \begin{array}{|l}\frac{x^2+y^2}{xy}=\frac{5}{2}\\x^2-y^2=3\end{array}
\displaystyle \begin{array}{|l}x^2+y^2=\frac{5}{2}xy\\x^2-y^2=3\end{array}
\displaystyle \begin{array}{|l}x^2-2xy+y^2=\frac{1}{2}xy\\(x-y)(x+y)=3\end{array}
\displaystyle \begin{array}{|l}(x-y)^2=\frac{xy}{2}\\(x-y)(x+y)=3\end{array}, we divide the first with the square of the second:
\displaystyle \frac{1}{(x+y)^2}=\frac{xy}{18}, or \displaystyle (x+y)^2=\frac{18}{xy}. We get the system
\displaystyle \begin{array}{|l}x^2+2xy+y^2=\frac{18}{xy}\\x^2-2xy+y^2=\frac{xy}{2}\end{array}, we now subtract them
\displaystyle 4xy=\frac{18}{xy}-\frac{xy}{2}
\displaystyle \frac{9}{2}xy=\frac{18}{xy}
\displaystyle (xy)^2=4
\displaystyle xy = \pm 2. But it can\'t be negative, because \displaystyle 2(x-y)^2=xy, therefore \displaystyle xy=2. Substituting back into the system, we get
\displaystyle \begin{array}{|l}(x-y)^2=x^2-2xy+y^2=x^2+y^2-4=1\\x^2-y^2=3\end{array}
\displaystyle \begin{array}{|l}x^2+y^2=5\\x^2-y^2=3\end{array}, we subtract them:
\displaystyle 2x^2=8, so \displaystyle x_1=2 and \displaystyle x_2=-2\displaystyle y_1=\frac{2}{x_1}=1 and \displaystyle y_2=\frac{2}{x_2}=-1. We now have to check if they are solutions. \displaystyle x_1+y_1=3>0\displaystyle x_1-y_1=1>0, so \displaystyle (2;1) is a solution to the system. \displaystyle x_2+y_2=-3<0, so \displaystyle (-2;-1) is not a solution.
The final solution is x=2

Comments

Popular posts from this blog

AAKASH MODULE CLASS 10 MATHEMATICS PDF

Aakash Class 10 module Chemistry PDF

Disaster Management Project (Class IX)